Some numerical results in the Selberg sieve method

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the block numerical range

The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.

متن کامل

Restriction Theory of the Selberg Sieve, with Applications

The Selberg sieve provides majorants for certain arithmetic sequences, such as the primes and the twin primes. We prove an L–L restriction theorem for majorants of this type. An immediate application is to the estimation of exponential sums over prime k-tuples. Let a1, . . . , ak and b1, . . . , bk be positive integers. Write h(θ) := ∑ n∈X e(nθ), where X is the set of all n 6 N such that the nu...

متن کامل

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

modified chain least squares method and some numerical results

recently, in order to increase the efficiency of least squares method in numerical solution of ill-posed problems, the chain least squares method is presented in a recurrent process by babolian et al. despite the fact that the given method has many advantages in terms of accuracy and stability, it does not have any stopping criterion and has high computational cost. in this article, the attempt...

متن کامل

Some steps in sieve theory

File LecturesEasyChennai.tex. 1 First lecture: initiation to Brun pure sieve Pure Brun sieve. It was very intricate before the invention of using Rankin’s trick. Multiplicativity. (Brun, 1919a), (Brun, 1919b), (Rankin, 1938), (Murty & Saradha, 1987). The Moebius function is defined by μ(d) = { (−1) when d is a product of t distinct prime factors, 0 otherwise. (1) We have μ(1) = 1. This function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1972

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-20-4-417-421